Masukkan soal...
Aljabar Linear Contoh
Langkah 1
Gunakan rumus untuk menentukan persamaan karakteristik .
Langkah 2
Matriks satuan atau matriks satuan dengan ordo adalah matriks persegi dengan bilangan satu di diagonal utama dan nol di elemen lainnya.
Langkah 3
Langkah 3.1
Substitusikan untuk .
Langkah 3.2
Substitusikan untuk .
Langkah 4
Langkah 4.1
Sederhanakan setiap suku.
Langkah 4.1.1
Kalikan dengan setiap elemen di dalam matriks tersebut.
Langkah 4.1.2
Sederhanakan setiap elemen dalam matriks.
Langkah 4.1.2.1
Kalikan dengan .
Langkah 4.1.2.2
Kalikan .
Langkah 4.1.2.2.1
Kalikan dengan .
Langkah 4.1.2.2.2
Kalikan dengan .
Langkah 4.1.2.3
Kalikan .
Langkah 4.1.2.3.1
Kalikan dengan .
Langkah 4.1.2.3.2
Kalikan dengan .
Langkah 4.1.2.4
Kalikan .
Langkah 4.1.2.4.1
Kalikan dengan .
Langkah 4.1.2.4.2
Kalikan dengan .
Langkah 4.1.2.5
Kalikan dengan .
Langkah 4.1.2.6
Kalikan .
Langkah 4.1.2.6.1
Kalikan dengan .
Langkah 4.1.2.6.2
Kalikan dengan .
Langkah 4.1.2.7
Kalikan .
Langkah 4.1.2.7.1
Kalikan dengan .
Langkah 4.1.2.7.2
Kalikan dengan .
Langkah 4.1.2.8
Kalikan .
Langkah 4.1.2.8.1
Kalikan dengan .
Langkah 4.1.2.8.2
Kalikan dengan .
Langkah 4.1.2.9
Kalikan dengan .
Langkah 4.2
Tambahkan elemen yang seletak.
Langkah 4.3
Simplify each element.
Langkah 4.3.1
Tambahkan dan .
Langkah 4.3.2
Tambahkan dan .
Langkah 4.3.3
Tambahkan dan .
Langkah 4.3.4
Tambahkan dan .
Langkah 4.3.5
Tambahkan dan .
Langkah 4.3.6
Tambahkan dan .
Langkah 5
Langkah 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Langkah 5.1.1
Consider the corresponding sign chart.
Langkah 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Langkah 5.1.3
The minor for is the determinant with row and column deleted.
Langkah 5.1.4
Multiply element by its cofactor.
Langkah 5.1.5
The minor for is the determinant with row and column deleted.
Langkah 5.1.6
Multiply element by its cofactor.
Langkah 5.1.7
The minor for is the determinant with row and column deleted.
Langkah 5.1.8
Multiply element by its cofactor.
Langkah 5.1.9
Add the terms together.
Langkah 5.2
Evaluasi .
Langkah 5.2.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 5.2.2
Sederhanakan determinannya.
Langkah 5.2.2.1
Sederhanakan setiap suku.
Langkah 5.2.2.1.1
Perluas menggunakan Metode FOIL.
Langkah 5.2.2.1.1.1
Terapkan sifat distributif.
Langkah 5.2.2.1.1.2
Terapkan sifat distributif.
Langkah 5.2.2.1.1.3
Terapkan sifat distributif.
Langkah 5.2.2.1.2
Sederhanakan dan gabungkan suku-suku sejenis.
Langkah 5.2.2.1.2.1
Sederhanakan setiap suku.
Langkah 5.2.2.1.2.1.1
Kalikan dengan .
Langkah 5.2.2.1.2.1.2
Kalikan dengan .
Langkah 5.2.2.1.2.1.3
Kalikan dengan .
Langkah 5.2.2.1.2.1.4
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 5.2.2.1.2.1.5
Kalikan dengan dengan menambahkan eksponennya.
Langkah 5.2.2.1.2.1.5.1
Pindahkan .
Langkah 5.2.2.1.2.1.5.2
Kalikan dengan .
Langkah 5.2.2.1.2.1.6
Kalikan dengan .
Langkah 5.2.2.1.2.1.7
Kalikan dengan .
Langkah 5.2.2.1.2.2
Kurangi dengan .
Langkah 5.2.2.1.3
Kalikan .
Langkah 5.2.2.1.3.1
Kalikan dengan .
Langkah 5.2.2.1.3.2
Kalikan dengan .
Langkah 5.2.2.2
Tambahkan dan .
Langkah 5.2.2.3
Susun kembali dan .
Langkah 5.3
Evaluasi .
Langkah 5.3.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 5.3.2
Sederhanakan determinannya.
Langkah 5.3.2.1
Sederhanakan setiap suku.
Langkah 5.3.2.1.1
Kalikan dengan .
Langkah 5.3.2.1.2
Kalikan dengan .
Langkah 5.3.2.2
Gabungkan suku balikan dalam .
Langkah 5.3.2.2.1
Kurangi dengan .
Langkah 5.3.2.2.2
Tambahkan dan .
Langkah 5.4
Evaluasi .
Langkah 5.4.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 5.4.2
Sederhanakan determinannya.
Langkah 5.4.2.1
Sederhanakan setiap suku.
Langkah 5.4.2.1.1
Kalikan dengan .
Langkah 5.4.2.1.2
Terapkan sifat distributif.
Langkah 5.4.2.1.3
Kalikan dengan .
Langkah 5.4.2.1.4
Kalikan .
Langkah 5.4.2.1.4.1
Kalikan dengan .
Langkah 5.4.2.1.4.2
Kalikan dengan .
Langkah 5.4.2.2
Kurangi dengan .
Langkah 5.4.2.3
Susun kembali dan .
Langkah 5.5
Sederhanakan determinannya.
Langkah 5.5.1
Sederhanakan setiap suku.
Langkah 5.5.1.1
Perluas dengan mengalikan setiap suku dalam pernyataan pertama dengan setiap suku dalam pernyataan kedua.
Langkah 5.5.1.2
Sederhanakan setiap suku.
Langkah 5.5.1.2.1
Kalikan dengan .
Langkah 5.5.1.2.2
Kalikan dengan .
Langkah 5.5.1.2.3
Kalikan dengan .
Langkah 5.5.1.2.4
Kalikan dengan dengan menambahkan eksponennya.
Langkah 5.5.1.2.4.1
Pindahkan .
Langkah 5.5.1.2.4.2
Kalikan dengan .
Langkah 5.5.1.2.4.2.1
Naikkan menjadi pangkat .
Langkah 5.5.1.2.4.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 5.5.1.2.4.3
Tambahkan dan .
Langkah 5.5.1.2.5
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 5.5.1.2.6
Kalikan dengan dengan menambahkan eksponennya.
Langkah 5.5.1.2.6.1
Pindahkan .
Langkah 5.5.1.2.6.2
Kalikan dengan .
Langkah 5.5.1.2.7
Kalikan dengan .
Langkah 5.5.1.2.8
Kalikan dengan .
Langkah 5.5.1.3
Tambahkan dan .
Langkah 5.5.1.4
Kurangi dengan .
Langkah 5.5.1.5
Kalikan dengan .
Langkah 5.5.1.6
Terapkan sifat distributif.
Langkah 5.5.1.7
Kalikan dengan .
Langkah 5.5.2
Kurangi dengan .
Langkah 5.5.3
Kurangi dengan .
Langkah 5.5.4
Tambahkan dan .
Langkah 5.5.5
Pindahkan .
Langkah 5.5.6
Susun kembali dan .
Langkah 6
Atur polinomial karakteristiknya agar sama dengan untuk menemukan nilai eigen .
Langkah 7
Langkah 7.1
Faktorkan menggunakan uji akar rasional.
Langkah 7.1.1
Jika fungsi Polinomial memiliki koefisien bilangan bulat, maka setiap nol rasional akan memiliki bentuk di mana adalah faktor dari konstanta dan adalah faktor dari koefisien pertama.
Langkah 7.1.2
Tentukan setiap gabungan dari . Ini adalah akar yang memungkinkan dari fungsi polinomial.
Langkah 7.1.3
Substitusikan dan sederhanakan pernyataannya. Dalam hal ini, pernyataannya sama dengan sehingga adalah akar dari polinomialnya.
Langkah 7.1.3.1
Substitusikan ke dalam polinomialnya.
Langkah 7.1.3.2
Naikkan menjadi pangkat .
Langkah 7.1.3.3
Kalikan dengan .
Langkah 7.1.3.4
Naikkan menjadi pangkat .
Langkah 7.1.3.5
Kalikan dengan .
Langkah 7.1.3.6
Tambahkan dan .
Langkah 7.1.3.7
Kalikan dengan .
Langkah 7.1.3.8
Kurangi dengan .
Langkah 7.1.3.9
Tambahkan dan .
Langkah 7.1.4
Karena adalah akar yang telah diketahui, bagi polinomial tersebut dengan untuk mencari polinomial hasil bagi. Polinomial ini kemudian dapat digunakan untuk menemukan akar yang belum diketahui.
Langkah 7.1.5
Bagilah dengan .
Langkah 7.1.5.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
- | - | + | - | + |
Langkah 7.1.5.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
- | |||||||||||
- | - | + | - | + |
Langkah 7.1.5.3
Kalikan suku hasil bagi baru dengan pembagi.
- | |||||||||||
- | - | + | - | + | |||||||
- | + |
Langkah 7.1.5.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
- | |||||||||||
- | - | + | - | + | |||||||
+ | - |
Langkah 7.1.5.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
- | |||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ |
Langkah 7.1.5.6
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
- | |||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - |
Langkah 7.1.5.7
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - |
Langkah 7.1.5.8
Kalikan suku hasil bagi baru dengan pembagi.
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
Langkah 7.1.5.9
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
Langkah 7.1.5.10
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- |
Langkah 7.1.5.11
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
Langkah 7.1.5.12
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
- | + | - | |||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
Langkah 7.1.5.13
Kalikan suku hasil bagi baru dengan pembagi.
- | + | - | |||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
Langkah 7.1.5.14
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
- | + | - | |||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
Langkah 7.1.5.15
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
- | + | - | |||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
Langkah 7.1.5.16
Karena sisanya adalah , maka jawaban akhirnya adalah hasil baginya.
Langkah 7.1.6
Tulis sebagai himpunan faktor.
Langkah 7.2
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 7.3
Atur agar sama dengan dan selesaikan .
Langkah 7.3.1
Atur sama dengan .
Langkah 7.3.2
Tambahkan ke kedua sisi persamaan.
Langkah 7.4
Atur agar sama dengan dan selesaikan .
Langkah 7.4.1
Atur sama dengan .
Langkah 7.4.2
Selesaikan untuk .
Langkah 7.4.2.1
Gunakan rumus kuadrat untuk menghitung penyelesaiannya.
Langkah 7.4.2.2
Substitusikan nilai-nilai , , dan ke dalam rumus kuadrat, lalu selesaikan .
Langkah 7.4.2.3
Sederhanakan.
Langkah 7.4.2.3.1
Sederhanakan pembilangnya.
Langkah 7.4.2.3.1.1
Naikkan menjadi pangkat .
Langkah 7.4.2.3.1.2
Kalikan .
Langkah 7.4.2.3.1.2.1
Kalikan dengan .
Langkah 7.4.2.3.1.2.2
Kalikan dengan .
Langkah 7.4.2.3.1.3
Kurangi dengan .
Langkah 7.4.2.3.1.4
Tulis kembali sebagai .
Langkah 7.4.2.3.1.5
Tulis kembali sebagai .
Langkah 7.4.2.3.1.6
Tulis kembali sebagai .
Langkah 7.4.2.3.1.7
Tulis kembali sebagai .
Langkah 7.4.2.3.1.8
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 7.4.2.3.1.9
Pindahkan ke sebelah kiri .
Langkah 7.4.2.3.2
Kalikan dengan .
Langkah 7.4.2.3.3
Sederhanakan .
Langkah 7.4.2.4
Jawaban akhirnya adalah kombinasi dari kedua penyelesaian tersebut.
Langkah 7.5
Penyelesaian akhirnya adalah semua nilai yang membuat benar.